Cross-Correlation of Motor Activity Signals from dc-Magnetoencephalography, Near-Infrared Spectroscopy, and Electromyography
نویسندگان
چکیده
Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.
منابع مشابه
Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملComparison of group-level, source localized activity for simultaneous functional near-infrared spectroscopy-magnetoencephalography and simultaneous fNIRS-fMRI during parametric median nerve stimulation.
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique, which uses light to measure changes in cerebral blood oxygenation through sensors placed on the surface of the scalp. We recorded concurrent fNIRS with magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) in order to investigate the group-level correspondence of these measures with so...
متن کاملDifferential infraslow (<0.1 Hz) cortical activations in the affected and unaffected hemispheres from patients with subacute stroke demonstrated by noninvasive DC-magnetoencephalography.
BACKGROUND AND PURPOSE Sustained mass depolarization of neurons, termed cortical spreading depolarization, is one electrophysiological correlate of the ischemic injury of neurons. Cortical spreading depolarizations spread in the gray matter at a rate of approximately 3 mm/min and are associated with large infraslow extracellular potential changes (<0.05 Hz). Moreover, smaller infraslow potentia...
متن کاملSimultaneous measurement of electroencephalography and near-infrared spectroscopy during voluntary motor preparation
We investigated the relationship between electrophysiological activity and haemodynamic response during motor preparation by simultaneous recording of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). It is still unknown how exactly EEG signals correlate with the haemodynamic response, although the activation in the premotor area during motor preparation has been captured by E...
متن کاملBrain-Computer-Interfaces in the Rehabilitation of Stroke and Neurotrauma
Paralysis after stroke or neurotrauma is among the leading causes of long term disability in adults. The development of brain-computer-interface (BCI) systems that allow online classification of electric or metabolic brain activity and their translation into control signals of external devices or computers have led to two major approaches in tackling the problem of paralysis. While assistive BC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010